Iodohydrin Synthesis from Simple and Functionalised Olefins on Treatment with Periodic Acid and Sodium Bisulfite

Hirofumi OHTA, Yasuyuki SAKATA, Toshiyuki TAKEUCHI, and Yasutaka ISHII*

Department of Applied Chemistry, Faculty of Engineering,

Kansai University, Suita, Osaka 564

Periodic acid (H_5IO_6) in combination with sodium bisulfite was found to be a prominent reagent to convert simple and functionalised olefins into the corresponding iodohydrins in fair to good yields under mild conditions. Allylic alcohols gave iodohydrins whose orientation obeyed anti-Markovnikov rule in contrast to olefins which gave Markovnikov products.

Periodic acid, $HIO_4 \cdot 2H_2O$ (abbreviate to H_5IO_6), or periodates such as NaIO₄ and KIO₄ are often used as oxidants of various organic substrates, i.e., glycols, polycyclic aromatic hydrocarbons, steroids, amines, and phenols. ¹⁾ For the purpose of olefin oxidations, however, these reagents are employed as a secondary oxidant with a wide variety of metal oxides (e.g., permanganate, ²⁾ osmium tetra-oxide, ³⁾ and ruthenium tetraoxide ⁴⁾), since olefins are not oxidized by periodic acid or periodates alone. In the previous paper, ⁵⁾ we showed that 1-octene ($\underline{1}$) on treatment with H_5IO_6 in the presence of dicyclopentadiene ($\underline{2}$) in aqueous tertbutyl alcohol affords 1-iodo-2-octanol ($\underline{3}$) together with furan derivative $\underline{4}$ which appears to be formed via rearrangement of iodohydrin of $\underline{2}$ (Eq. 1).

In this reaction, $\underline{2}$ seemingly functions as a reducing agent to be generated in situ hypoiodous acid, IOH, from H_5IO_6 . Our attention has been directed toward the direct preparation of iodohydrins from various substrates by using H_5IO_6 and an appropriate reducing agent in place of 2.

Usually, iodohydrins are prepared either by the reaction of epoxides with hydriodic acid or with metal iodides, ⁶⁾ or by the exchange of chlorohydrins or bromohydrins with sodium iodide, ⁷⁾ but the direct synthesis of iodohydrins from olefins is scarcely published. ^{8,9)}

This paper describes a versatile iodohydrin synthesis by the use of $\rm H_5IO_6$ in combination with NaHSO3 under mild conditions.

The conversion of $\underline{1}$ to $\underline{3}$ was chosen as a model reaction and carried out under various reaction conditions. Table 1 shows the results on the reaction of 1 with H_5IO_6 under the influence of several reducing agents.

A typical reaction procedure is as follows: To a solution of $\underline{1}$ (10 mmol) in CH₃CN (20 ml) was added H₅IO₆ (12 mmol) in water (6 ml), and then NaHSO₃(24 mmol) in water (24 ml) for a period of 10 min under stirring. The solution was allowed to react for an additional 2 h at room temperature. The reactant was extracted with ether, and the ether layer was washed with 20% Na₂S₂O₃. The extracts were dried over MgSO₄, filtered and evaporated to give almost pure 3 (85% yield).

Run	Reductant	(equiv.)	Conversion/% b)	Selectivity/% b
1	NaHSO ₃	(1.0)	74	45
2	NaHS03	(2.0)	95	90
3	NaHS03	(3.0)	>98	61
4 c)	$NaHSO_3$	(2.0)	95	40
5	Na_2SO_3	(2.0)	62	37
6	$Na_2S_2O_3$	(2.0)	50	40
7	Na ₂ HPO ₃	(2.0)	no reaction	
8	FeSO ₄	(2.0)	no rea	ction
9	H ₂ C ₂ O ₄	(2.0)	no rea	ction
10 d)	NaHS03	(2.0)	no reaction	

Table 1. Conversion of 1-Octene($\underline{1}$) to 1-Iodo-2-Octanol($\underline{3}$) with H₅IO₆ in the Presence of Various Reducing Agents ^{a)}

95

90

(2.0)

NaHSO3

11^{d,e)}

 H_5IO_6 -NaHSO3 system was found to be the best combination for the conversion of $\underline{1}$ to $\underline{3}$. To achieve the reaction with satisfactory yields, two equivalents of NaHSO3 to H_5IO_6 must be used (Run 2). However, two molar excess of NaHSO3 resulted in a lowering of the selectivity. When the reductant was added all at once to the medium, the yield of $\underline{3}$ decreased to 40% (Run 4). The combination of H_5IO_6 with Na₂SO₃ or Na₂S₂O₃ was less efficient than that with NaHSO₃, and $\underline{3}$ was formed in moderate yields (Runs 5 and 6). Na₂HPO₃, FeSO₄, and oxalic acid were inadequate for this purpose (Runs 7-9). Sodium periodate, NaIO₄, was also used as the oxidant in place of H_5IO_6 under acidic medium (pH 1), but no reaction took place in a neutral solution (Runs 10 and 11).

On the basis of these results, it seems that H₅IO₆ is reduced by NaHSO₃ to

a) To a mixture of 1 (10 mmol) and H_5IO_6 (12 mmol) in aqueous $CH_3CN(26 \text{ ml}, 77 \text{ v/v}\%)$ was added reductant (24 mmol) in water (24 ml) and stirred at room temperature for an additional 2 h. b) Determined by VPC.

c) Aqueous NaHSO3 was added all at once to the reaction system. d) NaIO4 was used in place of H_5IO_6 . e) Medium was acidified at pH 1 by 2M-H₂SO4.

form apparently hypoiodous acid, IOH, as an active species, although the detailed reaction path is uncertain.

Iodohydrins were prepared from various substrates using ${\rm H}_5{\rm IO}_6-{\rm NaHSO}_3$ system (Table 2).

Run	Substrate	Conv./ % b)	Product (Selec./ %) b)
1	1	95	3 OH (90)
2	<u>√</u> 5	98	$ \underbrace{\overset{\text{OH}}{\underline{6}}}_{\text{I}} (53) \qquad \underbrace{\overset{\text{I}}{\underline{7}}}_{\text{OH}} (26) $
3	Q	87	OH (80)
4 ^{c)}	<u>10</u> OH	80	
5	<u>12</u> он	-	₁₃ OH [60] d)
6	Å,	-	OH [81] d)

Table 2. Iodohydrin Synthesis from Simple and Functionalised Olefins by H₅IO₆-NaHSO₃ System^{a)}

- a) Reactions were carried out in the same method as Table 1.
- b) Determined by 1H -NMR and VPC measurements. c) NaHSO $_3(24 \text{ mmol})$ in water (5 ml) was added to the reaction system. d) Isolated yields.

The orientation of the reaction for the terminal olefin $\underline{1}$ obeyed Markovnikov rule to produce $\underline{3}$ in which iodine is bonded to the terminal carbon. However, internal olefin such as 2-octene ($\underline{5}$) afforded a regioisomeric mixture of iodohydrins, $\underline{6}$ and $\underline{7}$, whose ratio was about a 2:1. The preferential formation of $\underline{6}$ to $\underline{7}$ may be due to the easy attack of water (or 0H^-) to the C-3 cation resulted from the iodonium ion intermediate derived from the addition of I⁺ to $\underline{5}$. Cyclic olefin, cyclohexene ($\underline{8}$), gave trans-2-iodo-1-cyclohexanol ($\underline{9}$) in 70% yield.

The addition of IOH to 1-octen-3-ol ($\underline{10}$) took place regionselectively, but not stereoselectively, to yield 2-iodo-1,3-octanediol ($\underline{11}$) in high selectivity. It is attractive that the reaction followed anti-Markovnikov rule in contrast to the case of simple olefins which gave Markovnikov products. This is believed to be due to the difficulty of the attack of water from the C-2 side owing to the electrostatic repulsion by the neighboring hydroxy group. Likely $\underline{10}$, 3-methyl-2-buten-1-ol ($\underline{12}$) gave anti-Markovnikov product, 2-iodo-3-methyl-1,3-diol ($\underline{13}$) in

60% yield. The reaction of α , β -unsaturated ketone, 4-methyl-3-penten-2-one ($\underline{14}$), took place regionelectively, leading to 4-hydroxy-3-iodo-4-methylpenten-2-one ($\underline{15}$) in 81% yield.

In order to utilize the resulting iodohydrins, 2-iodo-1-cyclohexanol $\underline{9}$ was allowed to react with chlorotrimethylsilane in the presence of DBU at ambient temperature followed by refluxing temperature to give allylic alcohol protected by trimethylsilyl group in 75% yield. Furthermore, the oxidation of $\underline{9}$ by Jones reagent produced 2-iodo-1-cyclohexanone in good yield (Eq. 2).

Meanwhile, this method was extended to the preparation of bromohydrins by the use of NaBrO₃ in place of NaIO₄ under the same reaction conditions (Eq. 3).

$$\frac{1}{1} + NaBrO_3 = \frac{NaHSO_3(2 \text{ equiv.})}{CH_3CN/H_2O, \text{ rt., 2 h}} \qquad OH \qquad Br$$

$$73\%$$
(3)

In conclusion, $\rm H_5IO_6$ in combined with NaHSO3 was found to be a prominent reagent which provides a facile iodohydrin synthesis from simple and functionalised olefins in aqueous acetonitrile under mild conditions.

References

- 1) A.J.Fatiadi, Synthesis, 1974, 229; "Synthetic Reagents," ed by J.S.Pizey, Ellis Horwood Limted, West Sussex (1981), Vol. 4, p.147; E.L.Jackson, Org. React., 2, 341 (1944).
- 2) R.U.Leieux and E.Von Rudloff, Can. J. Chem., <u>33</u>, 1701 (1955); E.Von Rudloff, ibid., <u>43</u>, 1784 (1965).
- 3) R.Criegee, B.Marchand, and H.Wannowius, Liebigs Ann. Chem., <u>550</u>, 99 (1942); R.Pappo, D.S.Allen, R.U.Lemieux, W.S.Johnson, J. Org. Chem., <u>21</u>, 478 (1956).
- 4) C. Djerassi and R.R. Engle, J. Am. Chem. Soc., <u>75</u>, 3838 (1953); J.L. Courtney and K.F. Swansborough, Rev. Pure Appl. Chem., <u>22</u>, 47 (1972).
- 5) H.Ohta, T.Motoyama, T.Ura, Y.Ishii, and M.Ogawa, J. Org. Chem., <u>54</u>, 1668 (1989).
- 6) G.Sumrell, B.M.Wyman, R.G.Howell, and M.C.Harvey, Can. J. Chem., <u>42</u>, 2710 (1964).
- 7) R.C.Cambie, W.I.Noall, G.J.Potter, P.S.Rutledge, and P.D.Woodgate, J. Chem. Soc., Parkin Trans. 1, 1977, 226.
- 8) K.Otsubo, J.Inanaga, and M.Yamaguchi, Tetrahedron Lett., 28, 4435 (1987).
- 9) C.A. Stewart and C.A. Vanderwerf, J. Am. Chem. Soc., 76, 1261 (1954).

(Received February 28, 1990)